HIPERTEXTOS DEL ÁREA DE LA BIOLOGÍA
PRINCIPAL INTRODUCCIÓN ANIMACIONES CÉLULAS BIODIVERSIDAD HERENCIA EVOLUCIÓN

Introducción a la Genética Mendeliana


La Herencia, perspectiva histórica
| El monje y sus arvejas | Principio de la segregación | Cruzamiento dihíbrido | Mutación | Glosario | Enlaces | Índice

Principal ] Arriba ] [ Introducción a la genética ] Interacción genética ] Genética humana ] X vs. Y ] Genoma Extranuclear ] Mutación ] Glosario de Genética ]


La Herencia, perspectiva histórica 

Durante gran parte de la historia de la humanidad las personas desconocían los detalles científicos de la concepción y de como trabajaba la herencia. Por cierto los niños eran concebidos y por cierto se veía que existía una semejanza entre padres e hijos, pero los mecanismos no eran conocidos. Los filósofos griegos tenían varias ideas: Teofrasto (371-287 a.C.) comprendía la diferencia entre las flores masculinas y femeninas, decía que "los machos debían ser llevados a las hembras" dado que los machos "hacían madurar y persistir" a las flores hembras; Hipócrates (460?- 377? a.C.) especuló, que las "semillas" se producían en diferentes partes del cuerpo y se transmitían a los hijos al momento de la concepción, y Aristóteles pensó que el semen masculino y el semen femenino (así se llamaba al flujo menstrual) se mezclaban en la concepción, algunos pensaban que ni siquiera este tipo de mezclas eran necesarias, las formas "simples" (gusano, moscas...) nacían por generación espontánea.
Durante los 1700s, Anton van Leeuwenhoek (1632-1723, para los no holandeses lii-uen-huuk seria una pronunciación bastante aceptable; sus aportes y los de otros pioneros pueden leerse en una magnífica novelización) descubre "animálculos" en el esperma humano y de otros animales. Algunos de los que miraban por los primeros microscopios soñaron ver un "pequeño hombrecito" (homúnculo) dentro de cada espermatozoide. Sostuvieron que la única contribución de la hembra para la próxima generación era proveer el ambiente para su desarrollo. En oposición la escuela de los ovistas creía que el futuro hombre estaba en el óvulo, y que el espermatozoide solo lo estimulaba, creían también que había huevos para hembras y para machos.

La pangénesis sostenía la idea que machos y hembras forman "pangenes" en cada órgano. Estos "pangenes" se movían a través de la sangre a los genitales y luego a los recién nacidos. El concepto, originado en los griegos influenció a la biología hasta hace solo unos 100 años. Los términos "sangre azul", "consanguíneo", "hermano de sangre", "mezcla de sangre", "sangre gitana" y otros similares surgen de estos conceptos. Francis Galton, un primo de Charles Darwin, desecho experimentalmente la pangénesis.

Las teoría de la mezcla ("Blending theories") suplantó a la de los espermistas y ovistas durante el siglo 19. La mezcla de óvulos y espermatozoides daban como resultado la progenie que era una "mezcla" ("blend") de las características de los padres. Las células sexuales se conocían colectivamente como gametos. De acuerdo con la teoría de la mezcla, cuando un animal de color negro se cruzaba con uno blanco la progenie debía ser gris y, a menudo, este no era el resultado. La teoría de la mezcla obviaba, entre otras, explicar el salto de generación de algunas características.

Charles Darwin en su teoría de la evolución, se vio forzado a reconocer que la mezcla no era un factor (o al menos no el factor principal) y sugirió que la ciencia, en la mitad de los 1800s, no tenía la respuesta correcta al problema. La respuesta vino de un contemporáneo, Gregor Mendel, si bien Darwin nunca conoció el trabajo de Mendel.

Conceptos básicos de la genética

Resulta útil recordar algunos conceptos previos para comprender los experimentos de Mendel, aunque este monje no haya tenido conocimiento de los genes o los cromosomas... 

  • Meiosis: división celular que origina 4 células con la mitad de la dotación cromosómica de la célula orginal (haploides). Los cromosomas homólogos se separan y cada célula (gameta) recibe uno de los homólogos del par.
  • Carácter: característica observable y transmitida por los genes, ejemplo: color de las flores
  • Fenotipo : propiedades observables del genotipo y en el cual contribuye el medio ambiente.
  • Cromosomas Homólogos: cromosomas que se aparean durante la meiosis. Poseen igual longitud, posición del centrómero y comparten los mismos genes. Excepción : cromosomas X e Y que no comparten las características anteriores pero sí se consideran homólogos por aparearse en la meiosis. 
  • Gen  (del griego genos= nacimiento) son segmentos específicos de ADN (cromosoma) responsable de un determinado carácter; son la unidad funcional de la herencia. 
    El botánico danés  Wilhelm Johannsen (1857 - 1927) acuño este nombre, en 1909, para nombrar a los elemente de Mendel (también acuñó "fenotipo", "genotipo" y "selección").
  • Alelo: Formas alternativas de un gen en un mismo locus. Por ejemplo 2 posibles alelos en el locus v de la cebada son v y V. El término de alelo ó alelomorfo fue acuñado por William Bateson; literalmente significa "forma alternativa".
  • Locus: es el lugar específico de un gen en un cromosoma.
  • Homocigoto: organismo que tiene dos copias o alelos iguales de un gen en los dos homólogos, también llamado raza pura.
  • Heterocigoto: cuando los dos alelos son diferentes, en este caso el alelo dominante es el que se expresa.

El monje y su arvejas, en el jardín del monasterio

Un monje austríaco, Gregor Mendel, desarrolló los principios fundamentales de que hoy es la moderna ciencia de la genética. Mendel demostró que las características heredables son llevadas en unidades discretas que se heredan por separado en cada generación. Estas unidades discretas, que Mendel llamó elemente, se conocen hoy como genes


foto de: http://www.open.cz/
project/tourist/person/photo.htm
.

Mendel presentó sus experimentos en 1865. 

En esa época el conocimiento científico andaba por:

  • La teoría celular es comúnmente aceptada.
  • ya se describieron los principales orgánulos visibles con microscopía óptica.
  • Se había publicado El Origen de las especies de Darwin que presentaba la selección natural como mecanismo de transmisión de ciertos caracteres.

El método experimental de Mendel
El valor y la utilidad de cualquier experimento dependen de la elección del material adecuado al propósito para el cual se lo usa.

Sobre la puerta del Museo de Mendel en Brno está la inscripción de la frase de Mendel en checo: "MÁ DOBA PRRIJDE," que significa "mi tiempo llegará".... y recién llegó en los años 1900 donde sus principios fueron redescubiertos.

MENDEL

Mendel razonó que un organismo apto para los experimentos genéticos debería tener :

  1. una serie de características diferentes, fácilmente estudiables y con dos o tres fenotipos diferentes.
  2. la planta debía autofertilizarse y tener una estructura floral que limite los contactos accidentales, de crecimiento rápido y con gran número de descendientes.
  3. Los descendientes de las plantas autofertilizadas debían ser fértiles.

El organismo experimental de Mendel fue la arveja común (Pisum sativum, familia Leguminosae), que tiene una flor que normalmente se autopoliniza. La parte masculina de la flor se llama antera, produce el polen, que contiene los gametos masculinos. La parte femenina de la flor es el Gineceo, formado por estigma, estilo, y el ovario. El óvulo (gameto femenino) es producido en el ovario. El proceso de polinización (la transferencia de polen de la antera al estigma) ocurre, en el caso de la arveja, antes de la apertura de la flor. Del grano de polen crece un tubo (tubo polínico) que permite al núcleo viajar a través del estigma y el estilo, y eventualmente llegar al ovario. Las paredes del ovario formarán las futuras vainas (fruto: legumbre) y los óvulos fecundados las semillas. Ver ciclo animado de plantas.

Muchas flores permiten la polinización cruzada, lo cual puede dificultar los estudios si se desconoce las características de la planta masculina. Dado que las flores de las arvejas el estigma y las anteras están completamente encerrados y, a diferencia de la mayoría de las flores no se abren hasta ser fecundadas, es decir luego de la autopolinización, la genética de los progenitores puede ser comprendida mas fácilmente. Los embriones autofecundados de las arvejas desarrollan sin dificultad.

Para los entrecruzamientos Mendel abrió el pimpollo antes de la maduración y retiró las anteras con pinzas evitando la autopolinización. Luego las polinizó artificialmente, espolvoreando el estigma con polen recogido de otras plantas.

Mendel probó las 34 variedades de arvejas disponibles a través de los vendedores de semillas. Mendel buscó caracteres con rasgos bien definidos y alternativos constantes, que constituyeran razas puras. Las arvejas de jardín fueron plantadas y estudiadas durante ocho años a fin de comprobar que el rasgo observado se mantenía constante a lo largo de varias generaciones. Así, Mendel aisló 7 pares de caracteres que eran razas puras: cada carácter estudiado se presentaba en dos variantes, tales como: altura de la planta (alta o baja), superficie de la semilla (lisa o rugosa), forma de la vaina (inflada o contraída), forma de la vaina y otras (ver esquema a continuación). En sus experimentos Mendel uso unas 28.000 plantas de arvejas.

Modificada de: http://www.whfreeman.com/life/update/.

La contribución de Mendel fue excepcional en razón del enfoque metodológico utilizado para definir el problema, el uso de variables claramente entendibles y la aplicación de las matemática (estadística) al resultado experimental. Usando plantas de arvejas y el método estadístico, Mendel fue capaz de demostrar que los caracteres pasan de los padres a los hijos a través de la herencia de los genes.

El principio de la segregación 

Mendel primero estudió la herencia de la forma de la semilla. Un cruzamiento relacionado a un solo carácter se denomina monohibridación. Mendel cruzó una raza pura de plantas con semillas lisas con una raza pura de otra que siempre producía semillas rugosas (60 fertilizaciones en 15 plantas). Todas las semillas resultantes resultaron lisas.

Al año siguiente, Mendel plantó esas semillas y permitió que las mismas se autofecunden. Recogió 7324 semillas en total: 5474 lisas y 1850 rugosas. Para sistematizar el registro de datos, las generaciones fueron nombradas y numeradas. La generación parental se denomina como P. Los descendientes de la generación P son la generación F1 (la primera filial). La autofecundación de la generación de F1 produce la generación F2 (la segunda filial).

P1:  lisa X rugosa
F1 :  todas lisas
F2 :  5474 lisas y 1850 rugosas

Lo mismo sucedió con cada par de caracteres elegidos: cuando cepas puras de plantas con semillas amarillas se cruzan con razas puras de plantas con semillas verdes, todos los descendientes fueron plantas con semillas amarillas. Los padres del entrecruzamiento son la generación P1, y los descendientes representan la generación F1
Cuando los miembros de la generación F1 se entrecruzaron, Mendel recobro muchos descendientes amarillas, y algunos verdes. Luego del análisis estadístico de la generación F2, Mendel determinó que la relación entre plantas con semillas amarillas/verdes era 3:1. Las plantas  con semillas verdes no aparecían en la primera generación F1, y se encontraban en la segunda F2 y sucesivas generaciones. 

Cruzamiento monohíbrido entre semillas amarillas (dominantes) y verdes (recesivo). 
Vea este esquema con una animación

Mendel concluyó que el carácter estudiado estaba gobernado por factores discretos (separables) y que el rasgo del carácter que aparece en la F1 es el dominante. Los factores se heredaban a pares, teniendo cada generación un par de los mismos. Actualmente nos referimos a esos factores como alelos. El hecho de que los caracteres se hereden de a pares permiten explicar el fenómeno observado del "salto" de una generación.

  • Los caracteres dominantes fueron definidos por Mendel como aquellos que aparecen en la primera generación( F1) en los entrecruzamientos entre dos especies puras. Las letras mayúsculas se usan generalmente como notación para los caracteres dominantes
  • Los caracteres recesivos son los que "saltan" una generación, y se observan únicamente cuando el carácter dominante esta ausente. Las letras minúsculas se usan generalmente como notación para los caracteres recesivos.
Las plantas de Mendel exhibían dominancia completa, en las cuales las expresiones fenotípicas de los alelos eran dominantes o recesivas, sin "caracteres intermedios".

La Meiosis, un proceso desconocido en los días de Mendel, explica como se heredan los caracteres:

Esquema de la meiosis y formación de los gametos. Imagen  modificada de http://www.whfreeman.com/life/update2

Sumario de los resultados de Mendel

  1. Los descendientes F1 muestran solo uno de los caracteres de los padres, y siempre el mismo carácter.
  2. El carácter que no se observa en F1 reaparece en F2 en aproximadamente un 25% de los descendientes.
  3. El carácter no cambia cuando pasa a la descendencia: no se mezclan en ningún descendiente y se comportan como unidades separadas.
  4. Los cruzamientos recíprocos demostraron que cada progenitor contribuye de manera igual a la descendencia.
  5. El término fenotipo se refiere al conjunto de caracteres que se expresan o sea a la apariencia externa, mientras que el término genotipo se refiere a la totalidad genética del individuo .
  6. Machos y hembras contribuyen equitativamente a la formación del material genético de la descendencia: por lo tanto el numero de factores que determinan un carácter es probablemente dos (la solución mas simple).

El Principio de la Segregación o Primera Ley de Mendel, propone la separación de los factores apareados durante la formación de los gametos, donde cada gameto recibe uno u otro factor durante su formación. Los organismos portan dos factores (alelos) por cada carácter. Estos factores se separan durante la formación de los gametos.

Una versión en hipertexto (en Alemán o Ingles) del trabajo original de Mendel en 1865 se consigue siguiendo este enlace.

Consecuencias de la segregación

  • Alelos: se sabe ahora que cualquier gen presenta dos formas diferentes o alelos.
  • Homo- y Heterocigosis: determinada por la combinación de los dos alelos de un gen.
  • Fenotipo: expresión de las características genéticas o genotipo.

Cuadro de PUNNET

Es un mecanismo muy útil a la hora de considerar las posibles combinaciones de gametos.  Por ejemplo, en la F1 todas las plantas del cruzamiento monohíbrido entre plantas altas y bajas dieron altas. El cuadro de Punnett permite calcular el resultado de la F2: 

  

Cruzamiento de prueba

Para probar la hipótesis de que los alelos están en pares y se separan en la formación de gametas se llevó a cabo un experimento adicional: se cruzó la F1 (semillas lisas) con la raza pura paterna de semillas rugosas (padre homocigota recesivo) a lo que se denominó CRUZAMIENTO DE PRUEBA.

En un cruzamiento de prueba se cruzan un genotipo desconocido que muestra el carácter dominante con el padre homocigota recesivo. Lo que se pretende demostrar es si el genotipo desconocido es homocigota dominante o heterocigota para ese carácter. Si se producen dos fenotipos distintos quiere decir que el progenitor desconocido era heterocigota para ese carácter. Si por el contrario aparece un solo fenotipo es homocigoto.

Cruzamiento dihíbrido

Mendel entendió que era necesario realizar su experimento en una situación más compleja y realizó experimentos siguiendo dos caracteres de las semillas: forma y color. Un entrecruzamiento concerniente a dos caracteres se conoce como cruzamiento dihíbrido en oposición al cruzamiento de una sola característica o, monohíbrido.

La generación F2 resultante no muestra la característica relación fenotípica 3:1 dominante: recesivo. Los dos caracteres, si consideramos que se heredan independientemente, "calzan" dentro del principio de la segregación. En vez de los 4 posibles genotipos de un monohíbrido, el cruzamiento dihíbrido tiene 16 posibles genotipos.

Cruzamientos con dos caracteres

  • Las semillas lisas (S) son dominantes respecto a la semillas rugosos (s).
  • El color amarillo (Y) es dominante sobre el verde (y).

Una vez más, la meiosis nos ayuda a entender el comportamiento de los alelos.


Modificado de: http://www.whfreeman.com/life/update/.

Métodos, Resultados y Conclusiones

El gráfico superior es de Genetics pages en McGill University (http://www.mcgill.ca/nrs/dihyb2.gif).

Mendel partió de razas puras que tenían plantas con semillas lisas y amarillas, y las cruzó con razas puras de plantas con semillas verdes y arrugadas. Todas las semillas de la generación F1 tenían semillas lisas y amarillas. Las plantas de la generación F2 se obtuvieron por autofertilización, y produjeron cuatro fenotipos:

  1. 315 lisas y amarillas
  2. 108 lisas verdes
  3. 101 arrugadas amarillas
  4. 32 arrugadas verdes

Mendel analizó cada carácter por separado como si fuera que el otro carácter no estuviera presente. la relación 3:1 se veía separadamente y estaba de acuerdo con el Principio de Segregación. La segregación de los alelos S y s debían haber ocurrido independientemente de la separación de los alelos Y e y .

La probabilidad de que un gameto tenga Y es 1/2; la probabilidad de cualquier gameto de tener S es 1/2. La probabilidad de que un gameto contenga ambos Y y S se calcula por el producto de las probabilidades individuales (o 1/2 X 1/2 = 1/4).

La probabilidad de que dos gametos formen cualquier mezcla de estos alelos en su genotipo 1/4 X 1/4 (recuerde el producto de las probabilidades individuales).

Por lo tanto, existen 16 posibilidades y, el tablero de Punnett tiene 16 casillas. Dado que hay mas posibilidades de combinaciones que producen el fenotipo liso y amarillo (SSYY, SsYy, SsYY, y SSYy), este fenotipo es mas común en la F2.

De los resultados de su segundo experimento, Mendel formuló el Principio de la distribución independiente esto es, cuando se forman los gametos, los alelos de un gen para una característica dada se separan (segregan) independientemente de un alelo para otra característica. Si los caracteres se separan independientemente uno de otros durante la formación de los gametos, puede entenderse el resultado de un entrecruzamiento dihíbrido.

Desde los tiempo de Mendel, los científicos descubrieron el cromosoma y el ADN, y actualmente se interpreta el principio de la distribución independiente como alelos de genes en diferentes cromosomas que se heredan independientemente durante la formación de los gametos. Esto no era del conocimiento de Mendel.

Mutación

De Vries en 1902 trabajando sobre la "hierba del asno" describió en ella fenómenos de herencia mendeliana, sin embargo de tanto en tanto aparecía una característica que no estaba ni en los padres ni en los antecesores de las plantas, dedujo de ello que estas característica surgían por un cambio el factor que determinaba el carácter (gen) y que este cambio se transmitía a la progenie como cualquier otro carácter hereditario. A este cambio lo denominó mutación y a los organismos que la mostraban mutantes, los alelos salvajes son los que están presentes en la mayoría de los individuos  y dan el fenotipo esperado.

Ni las leyes de Mendel ni el concepto de mutación fueron conocidos por Darwin, pero resulta claro que la combinación de características de los padres da resultados sobre los cuales puede actuar el proceso evolutivo y que las mutaciones (si bien raras) son una fuente constante de variaciones que posibilitan la evolución.

Los diversos alelos existen porque cualquier gen está sometido a mutaciones, que ocurren cuando un gen cambia a una nueva forma estable y hereditaria. Las mutaciones son procesos aleatorios. Los alelos mutantes y salvajes residen en el mismo locus y se heredan de acuerdo a la genética mendeliana.


 



  • Alelo: (del griego allelon = "el uno al otro", recíprocamente): Formas alternativas de un gen, se hereda separadamente de cada padre (p. ej. en el locus para el color de ojos puede haber un alelo para ojos azules o uno para ojos negros). Uno o más estados alternativos de un gen.

  • Angiospermas (del griego angeion = vaso; sperma = semilla, simiente; literalmente la traducción sería "semillas en un recipiente"): Plantas con flores. Originadas hace unos 110 millones de años de un antecesor desconocido hoy dominan la mayor parte de la flora mundial. El gametofito masculino (de 2 a 3 células) se encuentra dentro de un grano de polen; el femenino (usualmente de ocho células) esta contenido en un óvulo que se encuentra en la fase esporofítica del ciclo de vida de la planta. Plantas cuyos gametos femeninos son llevados dentro de un ovario.

  • Antera (del griego anthos = flor): La punta del filamento del estambre, donde se forman los granos de polen.

  • Cromosomas (del griego khroma = color; soma = cuerpo): Estructuras del núcleo de la célula eucariota que consiste en moléculas de ADN (que contienen los genes) y proteínas (principalmente histonas).

  • Dihibridación (del latín ibrida = "producto de la cruza de dos animales diferentes"): En genética, un cruzamiento de dos variedades diferentes en el que están implicadas dos características.

  • Dominante: Término aplicado a un carácter (alelo) que se expresa sin tener en cuenta el segundo carácter (alelo).

  • Esporofito (del griego spora = semilla; phyton = planta): La generación diploide (productora de espora) en los organismos con alternancia de generaciones.

  • Estambre (del griego stamen = hebra): Estructura masculina de la flor que produce polen, generalmente esta formada por un filamento que sostiene a la antera productora de polen.

  • Estilo (del griego stilo = pilar): parte del carpelo de la flor; formado a partir de la pared del ovario. La punta del estilo lleva al estigma. Parte del pistilo que separa el estigma del ovario.

  • Estigma (del griego stigme = pinchadura): En las flores, la región del carpelo que recibe los granos de polen que germinan sobre ella. Secreta una sustancia húmeda y pegajosa para fijar los granos de polen.

  • Evolución (del latín e- = fuera; volvere = girar): Cambio de los organismos por adaptación, variación, sobrerreproducción y reproducción/sobrevivencia diferencial, proceso al que Charles Darwin y Alfred Wallace se refirieron como selección natural.

  • Expresión: En genética, proceso por el cual la información codificada en los genes se convierte en estructuras operacionales presentes en la célula.

  • Fenotipo (del griego phaineim = mostrar, typos = imprimir, estampar): Características observables de un individuo. La expresión de la composición alélica para un determinado carácter bajo estudio (Lo que se ve).

  • Flores: Estructura reproductiva de los esporofitos de las angiospermas, donde se genera el gametofito.

  • Gameto (del griego gamos = "unión de los sexos", esposa): Célula reproductora haploide (n) que cuando su núcleo se fusiona con otro gameto (n) del sexo opuesto origina un cigoto (2n), que por mitosis desarrolla un individuo con células somáticas diploides (2n), en algunos hongos y protistas puede, por meiosis, producir células somáticas haploides (n).

  • Gametofito (del griego gamos = "unión de los sexos", esposa; phyton = plantas): En las plantas que presentan alternancia de generaciones, el estadio haploide que produce gametos por mitosis.

  • Genes (del griego genos = nacimiento, raza; del latín genus = raza, origen): segmentos específicos de ADN que controlan las estructuras y funciones celulares; la unidad funcional de la herencia. Secuencia de bases de ADN que usualmente codifican para una secuencia polipeptídica de aminoácidos.

  • Genética : el estudio de la herencia de los caracteres

  • Genotipo: La totalidad de los alelos de un organismo.

  • Haploide (del griego haploos = simple, ploion = nave): Célula que contiene solo un miembro de cada cromosoma homólogo (número haploide = n). En la fecundación, dos gametos haploides se fusionan para formar una sola célula con un número diploide (por oposición, 2n) de cromosomas.

  • Herencia (del latín haerentia= pertenencias, cosas vinculadas) Transmisión de características de padres a hijos.

  • Heterocigoto (del griego heteros = otro, zygon = par) Cuando los dos alelos son diferentes, en este caso el alelo dominante es el que se expresa.

  • Homocigoto (del griego homos = mismo o similar, zygon = par): Cuando los dos alelos son iguales.

  • Locus (del latín: lugar, plural loci): Posición que ocupa un determinado gen en un cromosoma

  • Ligamiento (del inglés linkage): la proximidad de dos o más genes en un cromosoma; a mayor proximidad de los genes, menor posibilidad de que se separen durante los procesos de división celular y por lo tanto mayor la posibilidad de que se hereden juntos.

  • Meiosis (del griego meio = menor; meiosis = reducción): División celular en la cual la copia de los cromosomas es seguida por dos divisiones nucleares. Cada uno de los cuatro gametos resultantes recibe la mitad del número de cromosomas (número haploide) de la célula original.

  • Mitosis (del griego mitos = hebra, filamento): La división del núcleo y del material nuclear de una célula; se la divide usualmente en cuatro etapas: profase, metafase, anafase, y telofase. La copia de una célula. La mitosis ocurre únicamente en eucariotas. El ADN de la célula se duplica en la interfase y se distribuye durante las fases de la mitosis en las dos células resultantes de la división.

  • Monohibridación (del latín mono = uno; ibrida = "producto de la cruza de dos animales diferentes"): En genética, un cruzamiento de dos variedades diferentes en el que está implicada una sola característica.

  • Mutación (del latín mutare = cambiar): El cambio de un gen de una forma alélica a otra, cambio que resulta heredable.

  • Mutante: Organismo que lleva un gen que ha sufrido una mutación.

  • Ovario (del latín ovus= huevo): 1) En animales, la gónada femenina que produce óvulos y hormonas sexuales femeninas. 2) En vegetales, la parte inferior del gineceo que contiene los óvulos dentro de los cuales desarrolla el gametofito femenino.

  • Polen (del griego palynos = polvo, del latín pollen = polvo fino): En las plantas con semilla, el gametofito masculino rodeado por una cubierta protectora.

  • Polinización: la transferencia del polen de la antera al estigma femenino.

  • Principio de la segregación: (primera ley de Mendel); sostiene que cada par de caracteres heredables se separa durante la formación de los gametos en manera tal que cada gameto recibe uno de ellos.

  • Principio de la segregación independiente (segunda ley de Mendel): sostiene que cada alelo de un par de caracteres heredables se separa durante la formación de los gametos independientemente de los alelos de otro par de genes, es decir como si no hubiera otros factores (modificada a posteriori. por el descubrimiento del ligamiento). En resumen: los alelos de genes diferentes se segregan independientemente

  • Recesivo: Término que se aplica a un carácter (alelo) que solo se expresa cuando el segundo carácter (alelo) es igual.

  • Tablero de Punnett: Diagrama que permite calcular las posibilidades de combinaciones en un entrecruzamiento.

  • Segregación: separación de los cromosomas durante la división celular.


Traducción, redacción y diagramación a cargo de : Dr. Jorge S. Raisman, lito@unne.edu.ar & Dra. Ana María Gonzalez, amgonza@unne.edu.ar. Basada en la traducción de: gened.emc.maricopa.edu/bio/bio181/BIOBK/BioBookmito.html 

Revisado: Viernes, 19 de Mayo de 2006

 

 HIPERTEXTOS DEL ÁREA DE LA BIOLOGÍA  © 1998-2007

• Universidad Nacional del Nordeste • 

Fac. de Agroindustrias, Saenz Peña, Chaco República Argentina • 

Consultas y sugerencias a los autores lito3400@yahoo.com y ana@unne.edu.ar